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Abstract— The goal of this project is to use the Rovio to 

create a 2D map of its environment using a camera and a fixed 

laser pointer mounted on the robot. It uses basic visual 

algorithms to isolate the angular location of the laser dot in the 

frame, and uses that to determine distance to the object.  

A non-precision mounting setup introduces error into the 

system.  To compensate for this, we have applied supervised 

learning techniques to derive an estimate for the actual position 

and angle of the laser pointer on the Rovio.   

These parameters and additional training images are 

processed using statistical error modeling techniques. The 

specific error models were selected to match the data measured 

(Gaussian). Using this information and a localization reference 

from the Rovio base station, the Rovio builds maps. 

I. INTRODUCTION 

HE Rovio™ mobile webcam only provides image and 

localization data. It is a proprietary system that does not 

allow any additional inputs to be wired in. This precludes the 

use of traditional range finding sensors, like ultrasonic range 

finders. In addition when working with a cheap off-the-shelf 

systems like the Rovio, it is desirable not to have to add 

expensive sensors on them. This creates a need for a way to 

add a cheap distance sensor without having to connect to any 

new hardware lines. This project builds a new sensor by 

mounting a laser pointer on the Rovio. Using its existing 

camera, and the dot projected by the laser pointer, it is able 

to determine the range to an object. This method does not 

require any additional input channels on the robot. This 

technique can be applied to any robotic system with access 

to a camera.  

This paper is organized as follows. In section II, we 

discuss related work in the field then proceed to lay out the 

basic geometry underlying our system in section III. Next, in 

section IV, we discuss our application of supervised learning 

to correctly determine the precise geometry of the given 

system. We then provide an overview of the software 

architecture as implemented on our robot in section V. In 

section VI, we give a short description of the mapping 

system and then proceed to discuss our experimental setups 

and testing results in secions VII and VIII respectively. 

Next, we give a brief system evaluation discussing 

appropriate application situations for this system in section 

IX. Lastly, we conclude and present suggestions for future 

improvements on this system and methodology. 

II. RELATED WORK 

A paper that describes a similar method is “Obstacle 

 
 

 
 

Detection With Active Laser Triangulation” [1]. This paper 

focuses mainly on the obstacle detection using a  

fixed laser and camera on a wheel chair. We extend this idea 

to integrate with data from the Rovio’s localization system. 

This creates obstacle location data that is suitable for use in a 

map creation system.  

Another reference paper on this is by Quigley et. al [2] 

This paper describes the use of an actuated laser to 

implement a line scan with a camera. This provides more 

data points but at higher complexity than our system,  

and places greater requirements on the output capacity of the 

robotic system. Since robots like the Rovio do not provide 

outputs capable of controlling extra sensors, this technique 

cannot be directly used on it. In addition, we use a laser that 

projects a dot instead of a line. We experimented with using 

a line laser, but with the power class of the laser we were 

able to acquire, the line did not provide enough contrast to 

be visible through the Rovio’s camera. 
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III. EXTRACTING DEPTH FROM A FIXED LASER IN AN IMAGE 

Figure 1: Basic Geometry Involved in the Project 

 

Figure 1 illustrates the basic geometry involved in our 

project. From this geometry, we are able to extract the 

distance given the angle at which the laser dot appears in the 

camera. 

  
 

         
           

 

In equation (i),   and    are determined by the mounting 

position of the laser on the robot. These parameters are 

learned after mounting, since direct measurement is difficult 

with any great precision.  

IV. SUPERVISED LEARNING OF MOUNTING PARAMETERS 

In order to learn the specific   and    for a given robot and 

mounted laser, a supervised learning algorithm is used. This 

learning is accomplished by using a set of training images 

taken with known distances   to an object. The dataset is 

created by giving the robot its current distance, and 

recording that with the angle of the laser dot in the image. 

This dataset is then processed to find the   and    that 

minimize the error. Due to the geometry of the system, the 

resolution is reduced as the distance increases. As such, we 

use a fractional error metric to weight the errors of the 

shorter distances higher than the further ones.  
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Due to the number of local minima in this problem, a 

straight gradient descent gets stuck in non-ideal values. To 

work around this, we calculated the error over a large range 

of   and   , and found the global minimum.  

To test the values learned, we use a separate set of test 

images collected in the same way. We calculated      using 

the equation (i) above, and compared this with the measured 

value of  , and calculated the mean error 
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V. SOFTWARE SYSTEM ARCHITECTURE 

 
 

Figure 2: System Architecture 

 

There are three main pathways in the software 

implementation of this project. These are : 

1. Training 

2. Testing 

3. Application 

A. Training 

The training code takes input from both the vision 

processing algorithm and a human trainer. The processing 

algorithms provide the location of the laser dot in the image 

which is run through a Gaussian filter to minimize noise. 

The human input consists of the measured distance to the 

object that the laser is measuring. These two are written to a 

file to be used in training the parameters.  Once trained, 

these parameters are passed to various apply learning 

sections of the code. The training data is run through a batch 

apply-learning processing which gives the RMS error of 

each training point and the overall RMS error of the dataset 

(Training error). 
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B. Testing 

The testing code follows a similar path to the training 

code in taking data from both the visual algorithm and the 

human input. However, instead of being used to generate 

new parameters, this dataset is only used to test the previous 

parameters. This dataset is run through a batch apply-

learning process using parameters generated from the 

Training section of the code. This supplies the RMS error of 

each point in the testing set as well as the overall RMS error 

of the testing dataset (Testing error).  

C. Application 

This section of the code uses the learned parameters in 

order to provide a stream of distance measurements. Each 

image is processed using the same frontend as the training 

system and each output position of the dot in the image is 

converted into a distance measurement. These distances are 

filtered using a Gaussian filter to reduce noise in the sensor. 

In parallel to the processing of the laser image, the Rovio 

localization data is recorded and filtered using a Gaussian 

filter, in order to provide a stable position reading. The 

measured distance from the learning algorithm is stamped 

with this position as a header. This provides the metadata 

required to figure out where the object was in the global 

reference frame instead of relative to the Rovio. These 

annotated distances are then fed into the mapping subsystem. 

VI. VISION SYSTEM 

In order to isolate the laser dot, the images are run through 

a set of filters. Since, by the geometry of the system, the dot 

can only appear on the right side of the image and in a 

limited range over the y-axis, we construct a mask to remove 

the rest of the image data.  This mask is constructed by 

creating a rectangle of white over the area we need to keep 

and setting the rest of the mask image to black. This mask is 

ANDed with the input image to remove the unwanted 

sections of the image. This is applied across all three of the 

color channels. 

The image is then shifted into Hue Saturation Value 

(HSV) coordinates. A threshold is then applied to the hue 

channel to isolate the areas that are close to red. The 

resulting image is ANDed with the value channel to mask of 

areas that are not red enough. The coordinates of the 

brightest remaining pixels in the image are obtained and 

converted into an angle by multiplying the field of view of 

the camera by the ratio of the pixel position along the x-axis 

relative to the width of the image.  

   
 

Figure 3: Vision System 

 

 



  

VII. MAPPING 

 
Figure 4: Simulation in Stage 

 

 
Figure 5: Maps created in Simulation 

 

The mapping code we implemented uses a grid held 

within an image. Each time a laser reading is taken, a 

Gaussian blob is added, centered on where the object is 

believed to be. In addition, a Gaussian blurred line is 

subtracted along the path between the robot’s and object’s 

perceived positions. This results in decreasing the 

probability of an obstacle in the path that the laser is 

believed to indicate is empty, and to add to the probability 

that an object exists at a position that the laser sensor 

indicates that there’s an obstacle.  Figure 5 shows a 

simulation run using the mapping software, adding a 

Gaussian error to the position of the robot, and only using 

the central laser values from the simulated laser sensors. The 

left image indicates areas that are believed to be empty 

(negative values). The image on the right shows where 

obstacles are believed to be in white (positive values). The 

black areas in both images indicate areas that the robot has 

no knowledge of. 

VIII. EXPERIMENTS 

A. Test Methodology 

In order to obtain good reference datasets, the Rovio was 

rigidly mounted on a square platform to keep it aligned with 

the coordinate system and to provide a reliable way to 

accurately position the Rovio for measurements. A tape 

measure was affixed to the floor perpendicular to the object 

to be used in collecting the data. The Rovio was moved to 

various points along this axis and several datapoints were 

collected at each position. Clear outliers from the dataset 

were eliminated to avoid unduly affecting the training 

parameters. Testing images were collected in a similar 

manner.  

In order to test the suitability of the system for mapping, 

the Rovio was positioned in side of an area where most of 

the walls were within the range of the sensor’s reliable 

operation i.e. not looking down a long corridor. The Rovio 

base station was setup in this area in order to provide 

accurate localization. The Rovio was then driven using an 

open-loop controller to slowly rotate around in circles in 

discrete steps. This allowed it to see an area around it by 

360°. While doing this, the Rovio continuously took range 

readings from the laser sensor. The laser scans were 

accumulated in RViz in order to provide a basic drawing of 

the environment around the Rovio.  

B. Test Results 

 

 
 

Figure 6: Training Error 
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The average training error was found to be 0.2657in RMS 

(0.625%). As can be seen from the graph, the bulk of this 

error is located in the larger distance measurements as 

expected when using the fractional error metric.  

 

 
 

Figure 7: Testing Error 

 

The testing error was found to be 2.4956in RMS (2.72%). 

Most of this error is again in the longer distances. The RMS 

error for distances less than 30in decreases to a miniscule 

0.1150in (0.715%). This implies that this algorithm and 

setup work well for measuring moderate distances, but loses 

accuracy as the distance increases.  

 
Figure 8: Testing Error for distances less than 30in 

 

The test results can be seen in the screen shot of RViz in 

Figure 9.  

 

 
Figure 9: Map created in tests 

 

 
Figure 10: Location where map was taken 
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Figure 11: A sketch of  the floor plan of the location 

 

The image outline shows the three walls of an alcove and 

the opposite side of a hallway.  Some erroneous points can 

be seen where the laser was not correctly identified on the 

longer distances due to adverse lighting conditions. This 

resulted in the Rovio measuring bad values, usually near 

zero.   

Another interesting feature that can be seen is the bow 

that appears in the back wall of the alcove. This occurs 

because the distance measured is to the laser dot and is not 

in line with the camera. This transform was not taken into 

account in the code. This artifact can be corrected by 

applying an additional shift in the angle by the parameter  , 

as this is the direction the laser pointer was pointed at 

relative to the Rovio’s camera.  

 

IX. SYSTEM EVALUATION 

This system has a number of features that make it 

desirable for a certain subset of robotic work. Laser pointers 

are cheap, and the mounting does not require any great 

precision. This allows it to be quickly installed on a system 

without any specialized skills. This method does not require 

any direct access to the system hardware and can be added to 

any robot system that has a camera. This is particularly 

useful when working with proprietary platforms not 

originally intended for robotic work.  

While this system boasts a number of advantages, it is not 

without its limitations. Since the laser dot and camera are not 

on the same axis, it is possible for objects to occlude the 

laser dot from the camera.  In addition, due to the non-

linearity of the geometry of the setup, there is a tradeoff 

between the minimum distance that can be measured, and 

accuracy at distance.  This tradeoff is accomplished by 

varying the angle   of the laser. The larger   is, the higher 

the accuracy at range, and the greater the minimum 

measurable distance.  Also, as the distance increases, the 

area represented by a pixel increases faster than the laser 

disperses. This makes it hard to pick up the laser dot in the 

image.  

This technique also has difficulty with objects that are 

extremely reflective (shiny metals) or light absorbent (matte 

black). This is because these materials do not effectively 

radiate the laser light back in the direction of the camera.  

 

X. CONCLUSION 

In conclusion, we have demonstrated a method for finding 

distances using a single camera and a fixed laser. We’ve 

demonstrated that a supervised learning technique 

eliminated the need for a precise mounting and alignment of 

the laser. The system can be applied to any other system 

with a camera on it and can have a laser glued, stapled, taped 

or otherwise affixed on it. We’ve also demonstrated that this 

type of distance measuring technique can be used to create 

basic maps of an environment.  

There are a few a few areas that future research into this 

type of system could explore. One obvious method to 

improve performance on this setup would be to use a more 

powerful laser or a different color laser. This would improve 

contrast and increase range. A more powerful laser would 

also enable the projection of different shapes, like a line, and 

this would allow a mapping in three dimensions instead of 

two.  

The vision algorithms could also be improved to better 

isolate the laser from the surrounding environment. This 

would allow this method to work with a greater variety of 

textures and at greater distances.  

 Another possible improvement would be to use Kalman 

filters. A Kalman filter would allow greater movement of the 

Rovio while mapping, as opposed to the current Gaussian 

filters. With a Kalman filter in place, it makes sense to create 

a SLAM system, getting rid of the need for a base station. 

In this project, we demonstrated the ability to get 

distances and create maps using only the data form the laser. 

An extension on this would be to use the rest of the image 

data from the camera for augmenting the map.  
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